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Second Order System
• We have already discussed the affect of location of poles and zeros on

the transient response of 1st order systems.

• Compared to the simplicity of a first-order system, a second-order system
exhibits a wide range of responses that must be analyzed and described.

• Varying a first-order system's parameter (T, K) simply changes the speed
and offset of the response

• Whereas changes in the parameters of a second-order system can change
the form of the response.

• A second-order system can display characteristics much like a first-order
system or, depending on component values, display damped or pure
oscillations for its transient response.
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Introduction
• A general second-order system is characterized by the

following transfer function.
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un-damped natural frequency of the second order system,
which is the frequency of oscillation of the system without
damping.

n

damping ratio of the second order system, which is a measure
of the degree of resistance to change in the system output.


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Example 2
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• Determine the un-damped natural frequency and damping ratio
of the following second order system.
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• Compare the numerator and denominator of the given transfer
function with the general 2nd order transfer function.
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Introduction
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• Two poles of the system are
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Introduction

• According the value of , a second-order system can be set into
one of the four categories:
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1. Overdamped - when the system has two real distinct poles ( >1).
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Introduction

• According the value of , a second-order system can be set into
one of the four categories:
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2. Underdamped - when the system has two complex conjugate poles (0 < <1)
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Introduction

• According the value of , a second-order system can be set into
one of the four categories:
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3. Undamped - when the system has two imaginary poles ( = 0).
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Introduction

• According the value of , a second-order system can be set into
one of the four categories:
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4. Critically damped - when the system has two real but equal poles ( = 1).
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Underdamped System

11

For 0< <1 and ωn > 0, the 2nd order system’s response due to a 
unit step input is as follows.
Important timing characteristics: delay time, rise time, peak 
time, maximum overshoot, and settling time.


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Delay Time

12

• The delay (td) time is the time required for the response to
reach half the final value the very first time.
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Rise Time

13

• The rise time is the time required for the response to rise from 10%
to 90%, 5% to 95%, or 0% to 100% of its final value.

• For underdamped second order systems, the 0% to 100% rise time is
normally used. For overdamped systems, the 10% to 90% rise time is
commonly used.
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Peak Time

14

• The peak time is the time required for the response to reach 
the first peak of the overshoot.
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Maximum Overshoot

15

The maximum overshoot is the maximum peak value of the
response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to
use the maximum percent overshoot. It is defined by

The amount of the maximum (percent) overshoot directly
indicates the relative stability of the system.
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Settling Time

16

• The settling time is the time required for the response curve
to reach and stay within a range about the final value of size
specified by absolute percentage of the final value (usually 2%
or 5%).
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Step Response of underdamped System
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• The partial fraction expansion of above equation is given as

22 2

21

nn

n

ss

s

s
sC





++

+
−=)(

( )22 ns +

( )22 1  −n

( ) ( )222
1

21





−++

+
−=

nn

n

s

s

s
sC )(

22

2

2 nn

n

sssR

sC





++
=
)(

)(

( )22

2

2 nn

n

sss
sC





++
=)(

Step Response

17



Associate Prof. Dr . Mohamed Ahmed Ebrahim

Step Response of underdamped System

• Above equation can be written as
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21  −= nd• Where , is the frequency of transient oscillations
and is called damped natural frequency.

• The inverse Laplace transform of above equation can be obtained
easily if C(s) is written in the following form:
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Step Response of underdamped System
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Step Response of underdamped System
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Step Response of underdamped System
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Step Response of underdamped System
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Step Response of underdamped System
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Step Response of underdamped System
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S-Plane (Underdamped System)
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Since 𝜔2𝜁2 − 𝜔2 𝜁2 − 1 = 𝜔2, the distance 
from the pole to the origin is 𝜔 and 𝜁 = 𝑐𝑜𝑠𝛽
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Analytical Solution

• Rise time: set c(t)=1, we have 𝑡𝑟 =
𝜋−𝛽

𝜔𝑑

• Peak time: set 
𝑑𝑐(𝑡)

𝑑𝑡
= 0, we have 𝑡𝑝 =

𝜋

𝜔𝑑

• Maximum overshoot: M𝑝 = 𝑐 𝑡𝑝 − 1
= 𝑒−(𝜁𝜔/𝜔𝑑)𝜋 (for unity output)

• Settling time: the time for the outputs always 

within 2% of the final value is approximately 
4
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Steady State Error
• If the output of a control system at steady

state does not exactly match with the input,
the system is said to have steady state error.

• Any physical control system inherently
suffers steady-state error in response to
certain types of inputs.

• A system may have no steady-state error to a
step input, but the same system may exhibit
nonzero steady-state error to a ramp input.
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Classification of Control Systems

• Control systems may be classified
according to their ability to follow
step inputs, ramp inputs, parabolic
inputs, and so on.

• The magnitudes of the steady-state
errors due to these individual inputs
are indicative of the goodness of the
system.
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Classification of Control Systems

• Consider the unity-feedback control system
with the following open-loop transfer function

• It involves the term sN in the denominator,
representing N poles at the origin.

• A system is called type 0, type 1, type 2, ... , if
N=0, N=1, N=2, ... , respectively.
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Classification of Control Systems

• As the type number is increased, accuracy is
improved.

• However, increasing the type number
aggravates the stability problem.

• A compromise between steady-state accuracy
and relative stability is always necessary.
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Steady State Error of Unity Feedback Systems

• Consider the system shown in following figure.

• The closed-loop transfer function is
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Steady State Error of Unity Feedback Systems

• The transfer function between the error signal E(s) and the
input signal R(s) is

)()(

)(

sGsR

sE

+
=
1

1

• The final-value theorem provides a convenient way to find
the steady-state performance of a stable system.

• Since E(s) is

• The steady state error is

• Steady state error is defined as the error between the
input signal and the output signal when 𝑡 → ∞.
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Static Error Constants

• The static error constants are figures of merit of
control systems. The higher the constants, the
smaller the steady-state error.

• In a given system, the output may be the position,
velocity, pressure, temperature, or the like.

• Therefore, in what follows, we shall call the output
“position,” the rate of change of the output
“velocity,” and so on.

• This means that in a temperature control system
“position” represents the output temperature,
“velocity” represents the rate of change of the
output temperature, and so on.
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Static Position Error Constant (Kp)

• The steady-state error of the system for a unit-step input is

• The static position error constant Kp is defined by

• Thus, the steady-state error in terms of the static position 
error constant Kp is given by
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Static Position Error Constant (Kp)

• For a Type 0 system

• For Type 1 or higher order systems

• For a unit step input the steady state error ess is
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• The steady-state error of the system for a unit-ramp input is

• The static velocity error constant Kv is defined by

• Thus, the steady-state error in terms of the static velocity 
error constant Kv is given by

Static Velocity Error Constant (Kv)
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Static Velocity Error Constant (Kv)

• For a Type 0 system

• For Type 1 systems

• For type 2 or higher order systems
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Static Velocity Error Constant (Kv)

• For a ramp input the steady state error ess is
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• The steady-state error of the system for parabolic input is

• The static acceleration error constant Ka is defined by

• Thus, the steady-state error in terms of the static acceleration
error constant Ka is given by

Static Acceleration Error Constant (Ka)
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Static Acceleration Error Constant (Ka)

• For a Type 0 system

• For Type 1 systems

• For type 2 systems

• For type 3 or higher order systems
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Static Acceleration Error Constant (Ka)

• For a parabolic input the steady state error ess is
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Summary
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Example 2

• For the system shown in figure below evaluate the static
error constants and find the expected steady state errors
for the standard step, ramp and parabolic inputs.
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Example 2
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Example 2
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System representations

• Continuous-time LTI system

– Ordinary differential equation 

– Transfer function (Laplace transform)

– Dynamic equation (Simultaneous first-order ODE)

• Discrete-time LTI system

– Ordinary difference equation

– Transfer function (Z-transform)

– Dynamic equation (Simultaneous first-order ordinary 
difference equation)



Continuous-time LTI system
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Stability
• Internal behavior
–The effect of all characteristic 

roots.

• External behavior
–The effect by cancellation of 

some transfer function poles.



The Concept of Stability

A stable system is a dynamic system with a

bounded response to a bounded input.

➢ Absolute stability is a stable/not stable

characterization for a closed-loop

feedback system.

➢ Given that a system is stable we can

further characterize the degree of

stability, or the relative stability.



Definition :

A system is internal (asymptotic)

stable, if the zero-input response

decays to zero, as time approaches

infinity, for all possible initial

conditions.

Asymptotic stable =>All the 

characteristic polynomial roots are 

located in the LHP (left-half-plane)



Definition :

A system is external (bounded-input,

bounded-output) stable, if the zero-

state response is bounded, as time

approaches infinity, for all bounded

inputs.

bounded-input, bounded-output stable =>All the poles 

of transfer function are located in the LHP (left-half-

plane)

Asymptotic stable => BIBO stable

BIBO stable=> Asymptotic stable 
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System response

(i) First order system response

(ii) Second order system response

(iii)High order system response
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The Routh-Hurwitz Stability Criterion

➢ It was discovered that all coefficients of the

characteristic polynomial must have the same sign and

non-zero if all the roots are in the left-hand plane.

➢ These requirements are necessary but not sufficient. If

the above requirements are not met, it is known that

the system is unstable. But, if the requirements are

met, we still must investigate the system further to

determine the stability of the system.

➢ The Routh-Hurwitz criterion is a necessary and

sufficient criterion for the stability of linear systems.
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The Routh-Hurwitz Stability Criterion Steps

The method requires two steps: 

(1)Generate the data table (Routh table).

(2)Interpret the table to determine the 

number of poles in LHP and RHP.
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Initial layout for Routh table



Associate Prof. Dr . Mohamed Ahmed Ebrahim

Completed Routh table
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Feedback system and its equivalent closed-loop system
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Completed Routh table

Interpretation of Routh table

The number of roots of the polynomial that are in

the right half-plane is equal to the number of sign

changes in the first column.
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R-H: Special case. Zero in the first column

Replace the zero with      , the value of       is then allowed to approach zero 

from –ive or +ive side.

Problem Determine the stability of the closed-loop transfer function

5 4 3 2

10
( )

2 3 6 5 3
T s

s s s s s
=

+ + + + +
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R-H: Special case. Entire row is zero

Problem Determine the number of right-half-plane poles in the closed

transfer function

Solution: Form an auxiliary polynomial, P(s) using the entries of row above

row of zeros as coefficient, then differentiate with respect to s finally use

coefficients to replace the rows of zeros and continue the RH procedure.

5 4 3 2
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s s s s s
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4 2( ) 6 8P s s s= + + 3( )
4 12 0

dP s
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Problem Determine the number of poles in the right-half-plane, left-half-

plan and  on the       axis for the closed transfer functionj

8 7 6 5 4 3 2

20
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Feedback Control System

Problem Determine the number of poles in the right-half-plane, left-half-

plan and  on the       axis for system

Solution: The closed loop transfer function is

j

4 3 2

200
( )

6 11 6 200
T s

s s s s
=

+ + + +
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Routh table

2 poles in RHP, 2 poles in LHP no poles on            axis 

The system is unstable

j
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Feedback control system

Problem Find the range of gain K for the system that will cuase the 

system to be stable, unstabel, and marginally stable. Assume  K>0.

Solution: The closed loop transfer function is

3 2
( )

18 77

K
T s

s s s K
=

+ + +
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Routh table for Example 6.9

For K < 1386 the system is stable. For K > 1386 the system is unstable. 

For K = 1386 we will have entire row of zeros (s row). We form the even 

polynomial and differentiate and continue, no sign changes from the 

even polynomial so the 2 roots are on the         axis and the system is 

marginally stable

j
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Routh table for Example 6.10

Problem Factor the polynomial 

Solution: from the Routh table we see that the s1 row is a row of zeros. 

So the even polynomial at the s2 row is                                     since this 

polynomial is a factor of the original, dividing yields 

As the other factor so 

4 3 23 30 30 200s s s s+ + + +

2( ) 10P s s= +
2( ) 3 20P s s s= + +

4 3 23 30 30 200s s s s+ + + + =
2( 10)s + 2( 3 20)s s+ +
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Stability is State Space Example 6.11

Problem Given the system

Find out how many poles in the LHP, RHP and on the        axis

Solution: First form (sI-A)

Now find the det (sI-A) = 

 

0 3 1 10

2 8 1 0

10 5 2 0

 1 0 0

X X u

y X

   
   

= +
   
   − − −   

=

j

















+

−−−

−−

=

















−−−

−

















=−

2510

182

13

2510

182

130

00

00

00

)(

s

s

s

s

s

s

AsI

5276 23 −−− sss
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Routh table for Example 6.11

One sign change, so 1 pole in the LHP and the 

system is unstable
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With Our Best Wishes

Automatic Control (1) 

Course Staff
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