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Second Order System

We have already discussed the affect of location of poles and zeros on
the transient response of 1%t order systems.

Compared to the simplicity of a first-order system, a second-order system
exhibits a wide range of responses that must be analyzed and described.

Varying a first-order system's parameter (T, K) simply changes the speed
and offset of the response

Whereas changes in the parameters of a second-order system can change
the form of the response.

A second-order system can display characteristics much like a first-order
system or, depending on component values, display damped or pure
oscillations for its transient response.
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Introduction

e A general second-order system is characterized by the
following transfer function.

R(s) E ;E(s) w% C(s)
C(s) ; —

W

R(s) s2 +2{w,S + o

@, —— un-damped natural frequency of the second order system,
which is the frequency of oscillation of the system without
damping.

é/ ——> damping ratio of the second order system, which is a measure

of the degree of resistance to change in the system output.
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Example 2

* Determine the un-damped natural frequency and damping ratio
of the following second order system.

C(s) 4
R(s) s?+2s+4

e Compare the numerator and denominator of the given transfer
function with the general 2"9 order transfer function.

C(s) _ a)ﬁ
R(S)  s? +2¢w.s+ o
2 j— J—
n =4 = @ =2 = 24,5 =25

= lw,, =1

;/+2§a)ns+7»ﬁ = +2s+/(
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Introduction

C(s) o;
R(S) s +2¢w, s+ w?

* Two poles of the system are

—w oy -1
_C‘)né/_a)n\/é/2 —1
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Introduction

—a)n(;+a)m/g“2 —1
—wng—@nV§2—1

e According the value of Cf , a second-order system can be set into
one of the four categories:

1. Overdamped - when the system has two real distinct poles ( é' >1).

jw

Associate Prof. Dr. Mohamed Ahmed Ebrahim



Introduction

—a)n(;+a)m/g“2 —1
—wng—@nV§2—1

e According the value of Cf , a second-order system can be set into
one of the four categories:

2. Underdamped - when the system has two complex conjugate poles (0 <{ <1)

jw
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Introduction

—a)n(;+a)m/g“2 —1
—wng—@nV§2—1

e According the value of Cf , a second-order system can be set into
one of the four categories:

3. Undamped - when the system has two imaginary poles ( é’ =0).

jw

X

X
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Introduction

—a)n(;+a)m/g“2 —1
—wng—@nV§2—1

e According the value of Cf , a second-order system can be set into
one of the four categories:

4. Critically damped - when the system has two real but equal poles (é’ =1).

jw

Associate Prof. Dr. Mohamed Ahmed Ebrahim



Underdamped System

For 0<¢ <1 and w, > 0, the 2"? order system'’s response due to a
unit step input is as follows.

Important timing characteristics: delay time, rise time, peak
time, maximum overshoot, and settling time.

c(f) A
Allowable tolerance

{ Y005
1 _:_:::_?"'--—7-:1:::%? or
T ﬁ 0.02
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Delay Time

* The delay (t,) time is the time required for the response to
reach half the final value the very first time.

0.5

0




Rise Time
* The rise time is the time required for the response to rise from 10%
to 90%, 5% to 95%, or 0% to 100% of its final value.

* For underdamped second order systems, the 0% to 100% rise time is
normally used. For overdamped systems, the 10% to 90% rise time is
commonly used.

c(r) A

0.5

0




Peak Time

* The peak time is the time required for the response to reach
the first peak of the overshoot.

0.5

0




Maximum Overshoot

The maximum overshoot is the maximum peak value of the
response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to
use the maximum percent overshoot. It is defined by

c(t,) — c(0)

Maximum percent overshoot =
c(00)

X 100%

The amount of the maximum (percent) overshoot directly
indicates the relative stability of the system.
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Settling Time

* The settling time is the time required for the response curve
to reach and stay within a range about the final value of size

specified by absolute percentage of the final value (usually 2%
or 5%).
c(r) A

Allowable tolerance

A
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Step Response of underdamped System

2
C(s) B Wn Step Response a)ﬁ

R(S) 8% +2¢w,s + 3 Cls) = (52 +26w,S + o; )

* The partial fraction expansion of above equation is given as

| S+ 24w
C(S):—— 5 é/ n >
S S"+20w,S+ w;

o 1-¢?)
( 2 C(S)___ 2 2 2> 2 2 j
S+2g’a)n) S S +2é’a) S+§ a)n;ka) é’a)
C(s)=——
S + 4w, o \L-¢ 22 |
jlssoczate ®rof. 9Vloliamed' hmed Ebrakim
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Step Response of underdamped System

1 S+ 24w
C(s)=—— L
7S (s+§wn)2+w§(1—§2)

* Above equation can be written as

1 S+ 2w
Cle)=L- On
S (s+§a)n) + wy
* Where w4 =w,1-¢* ,is the frequency of transient oscillations
and is called damped natural frequency.

* The inverse Laplace transform of above equation can be obtained
easily if C(s) is written in the following form:

C(s)=l— S+ ¢

S (s+dw, + (e
( gﬁssomte (lqrqf «g)r med' }lhdmed' Ebrafiim




Step Response of underdamped System

1 S+ dw cw
cls) =1 - n_ n
Y S (S+§’a)n)2 +a)§ (S+§a)n)2 +a)§

S =

| S+ lw 1-¢7
Cls) = — - gzn 2 d 2 2
S (s+§a)n) + Wy (s+§a)n) + Wy
Ce)=L 5% ¢ 2
S (S+g“a)n)2+a)§ 1/1_52 (S+§a)n)2+a)§
c(t) =1—e " cos wyt — ] e " gin oyt

J1-¢72
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Step Response of underdamped System

C e—é’a)nt
1-¢2

c(t) =1—e ' cos Wyt — sin @yt

c(t) =1—e | cos Wyt +

Wy :C()n\fl—é/z
:a)n

e When £ =0

c(t) =1-cosw,t
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Step Response of underdamped System

c(t) =1 — e %@t

4
1-¢7

cos oyl +

If =01 and w,=3

1.8¢

1.6

1.4

1.2}

1ﬁ

0.8

0.6

0.4

0.2

0

sin wyt

0

A
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Step Response of underdamped System

c(t) =1—e | cos Wyt + sin wyt

1-¢7

If =05 and w, =3

1.4:

1.2

ne
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Step Response of underdamped System

c(t) =1—e | cos Wyt + ] sin wyt
i 1-¢° i

If £=09 and w, =3

1.4:

1.2

1-
0.8~
0.6 -
0.4+

0.2~
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Step Response of underdamped System

c(t) =1 — e %@t

cos oyl +

4

J1=¢72

sin wyt

med Ebrakim



S-Plane (Underdamped System)

Since w?{? — w?({? — 1) = w?, the distance

— C{)né/ + ), \/ ;2 —1 from the pole to the originis w and { = cosf

_a)ng_a)n\/éyz_l

ed Ebrakim



Analytical Solution
c(t) =1—e ' [cos oyt + ﬁ sin a)dt]
Rise time: set c(t)=1, we have t,. = B
dc(t)

m— ; é’z
— Wy = O —
wg d n

Peak time: set = 0, we have t,, = It

Maximum overshoot: Mp = c(tp) —1
= e~ CW/®A)T (for unity output)

Settling time: the time for the outputs always
L) L] L] L) L] 4
within 2% of the final value is approximately o
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Steady State Error

* If the output of a control system at steady
state does not exactly match with the input,
the system is said to have steady state error.

* Any physical control system inherently
suffers steady-state error in response to
certain types of inputs.

* A system may have no steady-state error to a
step input, but the same system may exhibit
nonzero steady-state error to a ramp input.
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Classification of Control Systems

 Control systems may be classified

according to their ability to follow
step inputs, ramp inputs, parabolic
inputs, and so on.

* The magnitudes of the steady-state
errors due to these individual inputs
are indicative of the goodness of the

system.
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Classification of Control Systems

* Consider the unity-feedback control system
with the following open-loop transfer function

K(T,s + 1)(Tys + 1)+ (T,,s + 1)
sN(Tys + 1)(Ths + 1)+ (Tps + 1)

p

G(s) =

* |t involves the term sV in the denominator,
representing N poles at the origin.

* A system is called type O, type 1, type 2, ..., if
N=0, N=1, N=2, ..., respectively.
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Classification of Control Systems

* As the type number is increased, accuracy is
improved.

* However, increasing the type number
aggravates the stability problem.

* A compromise between steady-state accuracy
and relative stability is always necessary.
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Steady State Error of Unity Feedback Systems

* Consider the system shown in following figure.

R(s) E(s) C(s)

* The closed-loop transfer function is

C(s)  G(s) B K(T,s + 1)(Tps +1)---(T,,s + 1)

— G(s) =
R(s) 1+ G(s) (5) sN(Tis + 1)(Tos + 1)+ (T,s + 1)
Associate Prof. Dr. Mohamed Ahmed Ebrahim



Steady State Error of Unity Feedback Systems

e Steady state error is defined as the error between the
input signal and the output signal when t — oo,

* The transfer function between the error signal E(s) and the
input signal R(s)is E(s) 1
R(s) 1+G(s)
* The final-value theorem provides a convenient way to find
the steady-state performance of a stable system.

* Since E(s) is E(s) = - 16(5) R(s)

* The steady state error is

~ i e(r) = limsE(s) = 1 SR(s)
€ — rl)nu:}ce ) N 51—1;%8 S) N 51—1;%1 -+ G(S)
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Static Error Constants

The static error constants are figures of merit of
control systems. The higher the constants, the
smaller the steady-state error.

In a given system, the output may be the position,
velocity, pressure, temperature, or the like.

Therefore, in what follows, we shall call the output
“position,” the rate of change of the output
“velocity,” and so on.

This means that in a temperature control system
“position” represents the output temperature,
“velocity” represents the rate of change of the
output temperature, and so on.
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Static Position Error Constant (K )

* The steady-state error of the system for a unit-step input is

: e 1
s = In 1+ G(s) s
B 1
1+ G(0)

* The static position error constant K is defined by

K, = limG(s) = G(0)

* Thus, the steady-state error in terms of the static position
error constant K is given by

1
L + K, . dtofiamed Afimed Ebrafiim

Css =



Static Position Error Constant (K )

* Fora Type O system

- K(T,s + 1)(T,s + 1) -
K, = lim = K
s—0 (TlS _|‘ 1)(T28 _I_ 1)

 For Type 1 or higher order systems

K(T,s + 1)(Tys + 1)+
K, = lim (Lus + 1)Tis + 1)

= for N =1
=0 sN(Tys + 1)(Ths + 1) - o T =

* For a unit step input the steady state error e, is

_ for type 0 system
O = T o or type 0 systems
e, = 0, for type 1 or higher systems
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Static Velocity Error Constant (K )

* The steady-state error of the system for a unit-ramp input is

.. = lim > !
T s=01 + G(s) s?
_ s 1
- SI—I}%) SG(S)

* The static velocity error constant K, is defined by

K, = lin‘(l) sG(s)

* Thus, the steady-state error in terms of the static velocity
error constant K, is given by

1
=%,
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Static Velocity Error Constant (K )

* Fora Type O system

 sK(T,s + 1)(Tys + 1)+
K, = lim =0
>0 (Tys + 1)(Ths + 1) -+

* For Type 1 systems

o SK(T,s + 1)(Tys + 1) -+
K, = lim =K
=0 §(Tys + 1)(Tos + 1) -+

* For type 2 or higher order systems

o sK(T,s + 1)(Tys + 1)+
K, = lim = 00, for N = 2
=0 ¢M(Tys + 1)(Ths + 1)+
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Static Velocity Error Constant (K )

* For aramp input the steady state error e_. is

1
e = T o0 for type O systems
— i — l f t 1 t
ey = K K’ or type 1 systems
1 .
€s = 2 T 0, for type 2 or higher systems
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Static Acceleration Error Constant (K,)

The steady-state error of the system for parabolic input is

Lm \ 1
e = li
T 5501 + G(s) §°
B 1
lin"(l)szG(s)

The static acceleration error constant K, is defined by
K, = lim s°G(s)
s—0

Thus, the steady-state error in terms of the static acceleration
error constant K, is given by

Cs —
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Static Acceleration Error Constant (K,)

For a Type O system

S’ K(T,s + 1)(Tys + 1)
K, = Iim =0
520 (Tys + 1)(Tos + 1)+

For Type 1 systems

o S’K(T,s + 1)(Tys + 1) -+
K, = lim =0
=0 §(Tys + 1)(Tos + 1)+

For type 2 systems
s’K(T,s + 1)(Tps + 1)---
K, = lim j( s+ Tes + 1) —- K
>0 s(Tys + 1)(Ts + 1)
For type 3 or higher order systems
s’K(T,s + 1)(Tys + 1)
K, = lim ( (Tos + 1)

s=0 §M(Tys + 1)(Tos + 1) -+

= 00, for N = 3



Static Acceleration Error Constant (K,)

* For a parabolic input the steady state error e_. is

e = 00, ftortype 0 and type 1 systems
1 ™ #
e for type 2 systems

e = 0, for type 3 or higher systems

Associate Prof. Dr. Mohamed Ahmed Ebrahim



Summary

Step Input Ramp Input Acceleration Input
r(t) =1 r(t) =t r(t) =3¢
Type 0 system ! 00 00
1 +K
T 1
ype 1 system 0 I 00
1
Type 2 system 0 0 Ve
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Example 2

* For the system shown in figure below evaluate the static
error constants and find the expected steady state errors
for the standard step, ramp and parabolic inputs.

100(s +2)(s +5)

R(S) —’

T s2(s+8)(s+12)

» C(S)
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Example 2

G(s) = 100(s +2)(s +5)
s?(s+8)(s+12)
K, = ?L%G(s) K, = lim SG(s)
s—0
100(s +2)(s + 5)
- sl—If(l)(s “(s+8)(s+ 12)j Ky = l,lf(l) Elfzo(ss(i;)z()s(i Jlrzs))j
Ky =
Ko “lm6O) (100976020649
5—0 a Sli% 32(5-|—8)(S—|—12)

< (100(0+2)(0+ 5)) 104
© 0+ 802 erof Or. Mohiamed Afimed Ebrafiim



Kp:oo
! 0
€ = =
1+ K,
1 0
€s — 7,
K,
1
€, — ——=0.09

Example 2

K, = o0 K, =10.4
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System representations

* Continuous-time LTI system
— Ordinary differential equation
— Transfer function (Laplace transform)
— Dynamic equation (Simultaneous first-order ODE)

* Discrete-time LTI system
— Ordinary difference equation

— Transfer function (Z-transform)

— Dynamic equation (Simultaneous first-order ordinary
difference equation)
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Continuous-time LTI system

10 v, 10

+ % % +
y(t)

>
=
~—
N |~
T
wli—= ||
T

VA_X(t) +l dVA _I_VA - y(t) _

0
1 2 dt 1
1dVv
=2V, +=—2 =x(t)+ y(t
T (t)+y(t)
Y-V, 1dy®) _,
1 3 dt
1 dy(t)
t)+ =22 =y
= y(t) 3 dt A

2Ay(t) + y'(t)]%[y'(t) FLy")]=x(0) + ()

= 1y"(t)+ 2 y'(t) + y(t) = x(t)

— yﬂ(t) 4 7yr(t) 4 6y(t) _ 6X(t) - \Lal‘J'aCe transform

Ordinary differential equation

S?Y (S) +7sY (S) +6Y (s) = X (s)
H(s)= Yes) 0

- X(s)"'c':O T 247546

Transfer function



y"(t)+7y'(t) +6y(t) =6x(t)
Xl(t) =y(t)

X, (1) =y'(t)

= X, (t) + 7, (t) + 6x,(t) = 6x(t)
— Xi(t) =X, (t)

ol weh
50| -6 —7[x@)]| |6 \

let

State equation (Simultaneous first-order ODE) Dynamic equation
X (t)

y®) =[1 0]{ 1 }
X, ()

output equation



Stability
* Internal behavior

—The effect of all characteristic
roots.

e External behavior

—The effect by cancellation of
some transfer function poles.
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The Concept of Stability

A stable system Is a dynamic system with a
bounded response to a bounded input.

» Absolute stability 1s a stable/not stable
characterization for a closed-loop
feedback system.

» Given that a system Is stable we can
further characterize the degree of
stability, or the relative stability.



Definition :

A system Is Internal (asymptotic)
stable, If the zero-input response
decays to zero, as time approaches
Infinity, for all possible Initial
conditions.




Definition :

A system Is external (bounded-input,
bounded-output) stable, If the zero-
state response IS bounded, as time
approaches Infinity, for all bounded
Inputs.




System response

(i) First order system response
(ii)) Second order system response

(iii)High order system response
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The Routh-Hurwitz Stability Criterion

» It was discovered that all coefficients of the
characteristic polynomial must have the same sign and
non-zero If all the roots are in the left-hand plane.

» These requirements are necessary but not sufficient. If
the above requirements are not met, it 1Is known that
the system Is unstable. But, if the requirements are
met, we still must investigate the system further to
determine the stability of the system.

» The Routh-Hurwitz criterion Is a necessary and
sufficient criterion for the stability of linear systems.
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The Routh-Hurwitz Stability Criterion Steps

The method requires two steps:
(1)Generate the data table (Routh table).

(2)Interpret the table to determine the
number of poles in LHP and RHP.
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N(s) C(s)

a454 + a353 + azsz tastag

A a3 dq 0
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Completed Routh table

gy (255] ao
as ai 0
|44 a> |44 ap aq O
as aj as O s O
= b = by = 0
a3 a3 as
_|as3 aq s 0‘ s 0
b, b- b, 0| b, 0|
b = Cj b = 0 b =0
|y ba b, o‘ b, o‘
Ci 0) _ dl C1 0) — 0 C1 O — 0
1 & | 1
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Feedback system and its equivalent closed-loop system

R(s) + E(s) 1000 C(s)
®T (s +2)(s+3)(s + 5) g
(a)
R(s) 1000 s)
s34+ 10s2 +31s + 1030
(b)
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Completed Routh table

53 1 31 0

52 o7 1 1030 103 0
_‘1 31‘ _‘1 0‘ _‘1 0‘

¥ 11103:_72 11020 110=0
_‘ 1 103‘ _‘ 1 o‘ _‘ 1 0‘

0 —7_272 Ol _ 103 —_7722 of _, —_7722 0 _

Interpretation of Routh table

The number of roots of the polynomial that are in
the right half-plane iIs equal to the number of sign

changes in the first column.
Associate Prof. Dr. Mohamed Ahmed Ebrahim



R-H: Special case. Zero in the first column
Replace the zero with &, the value of & s then allowed to approach zero
from —ive or +ive side.

Problem Determine the stability of the closed-loop transfer function
10

T(s)=
S° +25% +3s° +65° +55 +3
1 3 5 Label First Column € = + € = —
2 6 3 s” 1 + +
7 .5'4 2 + +
& = 0
) 2 53 N € + _
e 7 3 0 §? be ~ 7 . s
€ €
42€ — 49 — 6¢€* p 42€ — 49 — 6€2
12¢ — 14 0 0 ’ e — 14 + +
3 0 O SO 3 + +

ﬁssuaaw LTOJ. T . JyLonained Anined 'Lorariin



R-H: Special case. Entire row Is zero

Problem Determine the number of ri%ht-half-plane poles in the closed

transfer function T () = 1
$° +7s* +65° +42s° +8s +56

Solution: Form an auxiliary polynomial, P(s) using the entries of row above
row of zeros as coefficient, then differentiate with respect to s finally use
coefficients to replace the rows of zeros and continue the RH procedure.

P(s)=s*+6s%+8 dP(S) _ 452 4125 1+ 0
ds

s 1 6 bod
s 01 4Z 6 56 8
53 B 4 1 o ¥ 3 O o 0
s2 3 8 O
sl % 0 0O
s0 bod 0 0
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Problem Determine the number of poles in the right-half-plane, left-half-
plan and on the ] @ axis for the closed transfer function

20

T6)=%——= 6 5 4 3 2
S"+S" +125° +225° +39s” +59s° +48s“ + 38s + 20
58 1 12 39 48 20
s7 1 22 59 38 0
s© — 10 —1 —240 —2 1 20 2 0
57 20 1 60 3 40 2 0 0
g4 1 3 2 0 0
< | a2 o 63 o 0 0 0
52 ,;-’-/ 3 2 4 0 0 0
5! 1 0 0 0 0
3
50 4 0 0 0 0
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Feedback Control System

Problem Determine the number of poles in the right-half-plane, left-half-
plan and on the j axis for system

R(s) + E(s) 200 CGs)

s(s3+ 652+ 11s+ 6)

Solution: The closed loop transfer function is

200

T (s) =
5) s* +6s°+11s% +6s + 200
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Routh table

s l 11 200
s? £ 1 4 1

52 1 1 200 20

st —19

sV 20

2 poles in RHP, 2 poles in LHP no poleson jw axis
The system is unstable
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Feedback control system

Problem Find the range of gain K for the system that will cuase the
system to be stable, unstabel, and marginally stable. Assume K>O0.

R(s) +

E(s)

K Cls) _

s(s+7)(s+11)

Solution: The closed loop transfer function is

T(s)=

K

s° +18s% +77s + K
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Routh table for Example 6.9

g~ 1 77
g~ ] 77
52 18 K )
5° 18 1386
s 1386 — K 5! X 36
18
sV 1386
sV K

For K <1386 the system is stable. For K > 1386 the system is unstable.
For K = 1386 we will have entire row of zeros (s row). We form the even
polynomial and differentiate and continue, no sign changes from the
even polynomial so the 2 roots are on the J @ axis and the system is
marginally stable
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Routh table for Example 6.10

Problem Factor the polynomial

s* +35% +30s% +30s + 200

Solution: from the Routh table we see that the st row is a row of zeros.
since this

polynomial is a factor of the original, dividing yields P (s) =s* +3s + 20

So the even polynomial at the s2rowis P(s)=s* +10

As the other factor so

s* +3s°+30s? +30s +200 = (s*+10) (s* +3s + 20)

s | 30 200
53 31 39 10

52 207 1 200 10

st A2 A0

sV 10

{ Ebrahim



Stability is State Space Example 6.11

Problem Given the system

! 0 3 1 10

X =| 2 8 1 |X+(0 |u
10 -5 -2| |0 |

y=[1 0 0]X

Find out how many poles in the LHP, RHP and on the | @ axis
Solution: First form (sl-A)

(s 0 0|l [ O 3 1 s -3 -1
(sl-A)=|0 s O 2 8 1 |=|-2 s-8 -1
0 0 s| [-10 -5 -2| |10 5 s+2

Now find the det (sI-A) = S° —68° — 75 —52

Associate Prof. Dr. Mohamed Ahmed Ebrahim




Routh table for Example 6.11

5~ 1 —7

s* 4 3 ~57 —26
47

S o &0

5 —26

One sign change, so 1 pole in the LHP and the
system is unstable

Associate Prof. Dr. Mohamed Ahmed Ebrahim
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